wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tan2α=1+2tan2β then prove that cos2β=1+2cos2α

Open in App
Solution

We have, tan2α=1+2tan2β

sin2αcos2α=1+2sin2βcos2β

sin2αcos2β=cos2α(cos2β+sin2β+sin2β)

sin2αcos2β=cos2α(1+sin2β)

sin2α(1sin2β)=(1sin2α)(1+sin2β)

sin2αsin2αsin2β=1sin2α+sin2βsin2αsin2β

2sin2α=1+sin2βcos2α+sin2β=0

cos2β=1+2cos2α

Hence proved

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon