wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tan2α+2tanα.tan2β=tan2β+2tanβ.tan2α, then

A
tan2α+2tanα.tan2β=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
tanα+tanβ=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
tan2β+2tanβ.tan2α=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
tanα=tanβ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D tanα=tanβ
tan2α+2tanα.tan2β=tan2β+2tanβ.tan2α
tan2α+2tanα.(2tanβ1tan2β)=tan2β+2tanβ.(2tanα1tan2α)[tan2θ=2tanθ1tan2θ]
Now , tan2α+4tanα.tanβ1tan2β=tan2β+4tanα.tanβ1tan2α
tan2αtan2β=4tanαtanβ(11tan2α11tan2β)
tan2αtan2β=4tanαtanβ(1tan2β1+tan2α(1tan2α)(1tan2β))
tan2αtan2β=4tanαtanβ(tan2αtan2β(1tan2α)(1tan2β))
tan2αtan2β4tanαtanβ(tan2αtan2β(1tan2α)(1tan2β))=0
(tan2αtan2β)[14tanαtanβ(1tan2α)(1tan2β)]=0
either
(tan2αtan2β)=0tanα=±tanβ --- eq.1
or, [14tanαtanβ(1tan2α)(1tan2β)]=0
or, [4tanαtanβ(1tan2α)(1tan2β)]=1
4tanαtanβ=(1tan2α)(1tan2β)
4tanαtanβ=1tan2αtan2β+tan2α.tan2β
2tanαtanβ+tan2α+tan2β=1+tan2α.tan2β2tanαtanβ
or, (tanα+tanβ)2=(1tanα.tanβ)2
or, (tanα+tanβ)=±(1tanα.tanβ)
or, tanα+tanβ1tanα.tanβ=±1
or, tan(α+β)=±1
or, α+β=π4or,α+β=π4
[tanπ4=1]
Again from 1, we get,
(tanα+tanβ)(tanαtanβ)=0
either tanα+tanβ=0 or, tanαtanβ=0
Hence option B & D are correct.

1915986_690976_ans_4e027e73a76947df93c28269e02b3c8b.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Functions
QUANTITATIVE APTITUDE
Watch in App
Join BYJU'S Learning Program
CrossIcon