The correct options are
A (1+tanα)(1+tan(β2))=2sin(α+γ)
C tan(α+β)=tanγ
D tan2γtanβ=−1
Given,
tan2α×tanβ=1⇒2α=π2−β⇒2α+β=π2 ...(1)
tanα×tanγ=1⇒α=π2−γ⇒α+γ=π2 ...(2)
(1+tanα)(1+tan(π4−α))
=(1+tanα)×2(1+tanα)=2=RHS
From (1)
α+β=π2−α
∴tan(α+β)=cotα=cot(π2−γ)=tanγ
α+β=π2⇒2γ=π−2α⇒tan2γ=−tan2α
and β=π2−2α⇒tanβ=cot2α
∴tan2γ⋅tanβ=−1=RHS