If tan2αtan2β+tan2βtan2γ+tan2γtan2α+2tan2αtan2βtan2γ=1, then the value of sin2α+sin2β+sin2γ is
0
-1
1
None of these
Explanation for the correct option:
Step 1: Given that,
tan2αtan2β+tan2βtan2γ+tan2γtan2α+2tan2αtan2βtan2γ=1....(1)
Let sin2α=x
Then, cos2α=1–xandtan2α=x1-x
Similarly, let sin2β=y
Then, cos2β=1–yandtan2β=y1-y
And, let sin2γ=z
Then, cos2γ=1–zandtan2γ=z1-z
Step 2: Substituting these values in 1,
∴x1-xy1-y+y1-yz1-z+z1-zx1-x+2x1-xy1-yz1-z=1⇒xy1-x1-y+yz1-y1-z+zx1-z1-x+2xyz1-x1-y1-z=1⇒xy1-z+yz1-x+zx1-y1-x1-y1-z=1-2xyz1-x1-y1-z⇒xy1-z+yz1-x+zx1-y=1-x1-y1-z-2xyz∴x+y+z=1
Therefore, sin2α+sin2β+sin2γ=1
Hence, the correct option is (C).