The correct option is C 1
weknowtan2α=sin2αcos2α=sin2α1−sin2α
Letsin2α=x
tan2α=x1−x
similarlyifsin2β=y,tan2β=y1−y
similarlyifsin2γ=z,tan2γ=z1−z
puttingthese values in the given equation
2(x1−x)(y1−y)(z1−z)+(x1−x)(y1−y)+(y1−y)(z1−z)+(z1−z)(x1−x)=1
⇒xy(1−y)(1−x)+yz(1−y)(1−z)+zx(1−z)(1−x)=1−2xyz(1−x)(1−y)(1−z)
⇒xy−xyz+yz−xyz+zx−xyz(1−x)(1−y)(1−z)=1−2xyz(1−x)(1−y)(1−z)
⇒(x+y+z)−2xyz(1−x)(1−y)(1−z)=1−2xyz(1−x)(1−y)(1−z)
⇒x+y+z=1
Hence
sin2α+sin2β+sin2γ=1