secθ+tan3θcosecθ
=secθ[secθ+tan3θcosecθsecθ]
=secθ[1+tan3θ.cosθsinθ]
=√1+tan2θ[1+tan2θ]
=(1+tan2θ)3/2
=[1+(1−a2)]3/2
=(2−a2)3/2
If tan2 θ=1−a2, prove that sec θ+(tan3 θ×cosec θ)=(2−a2)32.