If tan2 θ=1−a2, prove that sec θ+(tan3 θ×cosec θ)=(2−a2)32.
sec θ+tan3 θ cosec θ=sec θ((sec θ+tan3 θ cosec θ)sec θ)
=sec θ((1+tan3 θcos θsin θ)=sec θ(1+tan3 θ×cot θ)=√1+tan2θ(1+tan2θ)=(1+tan2)32=(2−a2)32
Prove that cotθ+cosecθ−1cotθ−cosecθ+1=cotθ+ cosecθ