If tan2θ=1-e2, then secθ+tan3θcosecθ is equal to
2-e2
2-e232
None of these
Explanation for the correct option:
Step 1: Given that,
tan2θ=1-e2...1
Then,
∴secθ+tan3θcosecθ=secθ+sin3θcos3θ1sinθ∵sinθcosθ=tanθ=secθ+tan2θsecθ=secθ1+tan2θ=1+tan2θ1+tan2θ∵sec2θ=1+tan2θ=1+tan2θ32
Step 2: From equation 1,
∴1+1-e232=2-e232
Therefore, the value of secθ+tan3θcosecθ=2-e2
Hence, the correct option is (B).
If cos θ−tan θ=sec θ,then,θ is equal to