If tan2θ=2tan2ϕ+1,then cos2θ+sin2ϕ=
cos2θ=1−tan2θ1+tan2θ
=1−(2tan2ϕ+1)1+2tan2ϕ+1
We have tan2θ=2tan2ϕ+1
=−2tan2ϕ2sec2ϕ
=−tan2ϕsec2ϕ
=−tan2ϕcos2ϕ
=−sin2ϕcos2ϕ×cos2ϕ
=−sin2ϕ
∴cos2θ+sin2ϕ=0
'
If sin2θ+sin2ϕ=12 and cos2θ+cos2ϕ=32, then cos2(θ−ϕ)=