We have,
tan2x=2tan2y+1
On adding 1 both side and we get,
tan2x+1=2tan2y+1+1
⇒sec2x=2tan2y+2
⇒sec2x=2(tan2y+1)
⇒sec2x=2sec2y
⇒cos2x=12cos2y
⇒2cos2x=cos2y
Subtracting 1 from both side and we get,
⇒2cos2x−1=cos2y−1
⇒cos2x=−(1−cos2y)
⇒cos2x=−sin2y
So,
L.H.S.
cos2x+sin2y
=(−sin2y)+sin2y
=0
R.H.S.