The correct options are
B x=1
C y=nπ−1+π4, n∈Z
D y=nπ−1−π4, n∈Z
tan2(x+y)+cot2(x+y)=1+2x−x2
⇒[tan(x+y)−cot(x+y)]2+2=1+2x−x2
⇒[tan(x+y)−cot(x+y)]2=−(x2−2x+1)
⇒[tan(x+y)−cot(x+y)]2=−(x−1)2
Now,
L.H.S.≥0 and R.H.S.≤0
So, solution exist only when R.H.S.=L.H.S.=0
For R.H.S.=0
−(x−1)2=0⇒x=1
For L.H.S.=0
[tan(x+y)−cot(x+y)]2=0
⇒tan(x+y)−cot(x+y)=0
⇒tan(x+y)=cot(x+y)
⇒tan2(x+y)=1=tan2π4
⇒x+y=nπ±π4
Here, x=1
⇒y=(nπ−1)±π4, n∈Z