If tan2θtanθ=1, then the general value of θ is
n+12π3
n+12π
2n±12π3
None of these
Explanation for the correct option:
Given that: tan2θtanθ=1
Use the formula tan2A=2tanA1-tan2A
∴2tanθ1-tan2θtanθ=1⇒2tan2θ1-tan2θ=1⇒2tan2θ=1-tan2θ⇒3tan2θ=1⇒tan2θ=13⇒tanθ=±13∴θ=πn±16
Hence, the correct option is (D).
If sin2θ=14, then the most general value of θ is
If tan3θ-1tan3θ+1=3, then the general value of θ is
If sin2θ-2cosθ+14=0, then the general value of θ is
If tan2(θ)-(1+3)tan(θ)+3=0, then the general value of θ is