The correct option is C 1
secx+tan3x cosec x=secx(1+tan3xcosec xsecx)=√1+tan2x(1+tan3xcotx)=(1+tan2x)3/2=(1+1−α2)3/2=(2−α2)3/2
So, the given equation is
secx+tan3x cosec x=(2−α2)3/2⇒(2−α2)3/2=(2−α2)3/2
For the square root to be defined,
2−α2≥0⇒α2≤2⇒α∈[−√2,√2]⋯(1)
But we know that,
tan2x=1−α2⇒tan2x≥0⇒1−α2≥0⇒α2≤1⇒α∈[−1,1]⋯(2)
From equation (1) and (2),
∴α∈[−1,1]