If tan2x+sec x−a=0 has alteast one solution, then a∈ ___
(−∞,1]
[−1,∞]
[1,∞)
(−∞,−1]
tan2x+sec x−a=0(sec2x−1)+sec x−a=0=sec2x+sec x+14−1−14−a=0=(sec x+12)2=54+aNow, sec x≥1 or ≤−1⇒sec x+12≥32 or sec x+12≤−12∴(sec x+12)2≥94 or (sec x+12)2≥14i.e. 54+a≥14⇒a≥−1
If tan2x+secx−a=0 has alteast one solution, then a∈..........
If esinx−e−sinx=a has alteast one real solution, then