wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tan3A+cot3A=18, then the value of tan4A+cot4A40 is equal to

Open in App
Solution

We know that
a3+b3=(a+b)33(a+b)+a×b
Now let a=tanA and b=cotA
So, we have
tan3A+cot3A=(tanA+cotA)33(tanA+cotA).tanA.cotA
(tanA+cotA)33(tanA+cotA).1
[tanA.cotA=1]
LettanA+cotA=P
tan3A+cot3A=P33P
Now, we have tan3A+cot3A=18
P33P=18
P33P18=0
we tell that p=3 is a solution to above example by hit and trial method.
(p3)(p2+3p+6)=a..1
Now , p2+3p+6=0 has imaginary root for p
But p=tanA+cotA
p= real for all permissible value of A.
Hence, as p imaginary,
p2+3p+60
Hence, for equation 1 to hold p3=0p=3
Now , tan4A+cot4A40=(tan2A+cot2A)22
=(tan2A+cot2A)2240
=((tan2A+cot2A)22×tanA×cotA)242
=(p22)242
=(322)242.....from equation 2
=(92)242=7242=7
So, the answer is 7


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Logarithmic Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon