We know that
a3+b3=(a+b)3−3(a+b)+a×b
Now let a=tanA and b=cotA
So, we have
tan3A+cot3A=(tanA+cotA)3−3(tanA+cotA).tanA.cotA
(tanA+cotA)3−3(tanA+cotA).1
[∵tanA.cotA=1]
LettanA+cotA=P
⇒tan3A+cot3A=P3−3P
Now, we have ⇒tan3A+cot3A=18
P3−3P=18
⇒P3−3P−18=0
⇒ we tell that p=3 is a solution to above example by hit and trial method.
⇒(p−3)(p2+3p+6)=a…..1
Now , p2+3p+6=0 has imaginary root for p
But p=tanA+cotA
⇒p= real for all permissible value of A.
Hence, as p≠ imaginary,
p2+3p+6≠0
Hence, for equation 1 to hold p−3=0⇒p=3
Now , tan4A+cot4A−40=(tan2A+cot2A)2−2
=(tan2A+cot2A)2−2−40
=((tan2A+cot2A)2−2×tanA×cotA)2−42
=(p2−2)2−42
=(32−2)2−42.....from equation 2
=(9−2)2−42=72−42=7
So, the answer is 7