If tan3θ+cot3θ=52, then the value of tan2θ+cot2θ is equal to
tan3θ+cot3θ=52
(tanθ+cotθ)(tan2θ+cot2θ−1)=52
(tanθ+cotθ)((tanθ+cotθ)2−3)=52
Let tanθ+cotθ=x
x(x2−3)=52
x3−3x−52=0
Solving this we get x=4⇒tanθ+cotθ=4
tan2θ+cot2θ+2=16=>tan2θ+cot2θ=14