If tan3θ-1tan3θ+1=3, then the general value of θ is
nπ3-π12
nπ+7π12
nπ3+7π36
nπ+π12
Explanation for the correct option:
Step 1: Using componendo and dividendo rule
Given equation : tan3θ-1tan3θ+1=3
It can be expressed as a:b=c:dand(a+b):(a–b)=(c+d):(c–d)
∴tan3θ-1+tan3θ+1tan3θ-1-tan3θ-1=3+13-1⇒2tan3θ-2=3+13-1⇒tan3θ=3+11-3
Step 2: Applying the formula tanπ3=3andtanπ4=1
∴tan3θ=tanπ3+tanπ41-tanπ3tanπ4=tanπ3+π4=tan7π12
Now,3θ=nπ+7π12∴θ=nπ3+7π36
Hence, the correct option is (C).
If cosθ+cos2θ+cos3θ=0, then the general value of θ is:
If tan2(θ)-(1+3)tan(θ)+3=0, then the general value of θ is