The correct option is A nπ
tan3x+tanx=2tan2x⇒sin3xcos3x+sinxcosx=2sin2xcos2x⇒sin4xcos3xcosx=2sin2xcos2x⇒sin4xcos2x=sin2x[2cos3xcosx]⇒sin4xcos2x=sin2x[cos4x+cos2x]⇒sin4xcos2x−sin2xcos4x=sin2xcos2x⇒sin2x=sin2xcos2x⇒sin2x=0, cos2x=1⇒x=nπ2, x=nπ
But x=nπ/2 is rejected as when n is odd, tanx is not defined and when n is even, i.e. 2k , then x=kπ
So, x=nπ,n∈Z is the solution.
Alternate Solution:
tan3x+tanx=2tan2x⇒tan3x−tan2x=tan2x−tanx⇒tanx[1+tan3xtan2x]=tanx[1+tan2xtanx] (∵tanx=tan(3x−2x))⇒tanxtan2x[tan3x−tanx]=0⇒x=nπ, x=nπ2, 3x=nπ+x⇒x=nπ, x=nπ2
But x=nπ/2 is rejected as when n is odd, tanx is not defined and when n is even, i.e. 2k , then x=kπ
So, x=nπ,n∈Z is the solution.