If tanπ4+x+tanπ4-x=a then find the value of tan2π4+x+tan2π4-x.
Calculate the value of the given expression :
Given,
tanπ4+x+tanπ4-x=a
tanπ4+x+tanπ4+x2=a2⇒tan2π4+x+tan2π4-x+2tanπ4+xtanπ4-x=a2∵a+b2=a2+b2+2ab...(i)
Using tanA+B=tanA+tanB1-tanAtanB
⇒tanπ4+x+π4-x=tanπ4+x+tanπ4-x1-tanπ4+xtanπ4-x⇒tanπ2=tanπ4+x+tanπ4-x1-tanπ4+xtanπ4-x⇒1-tanπ4+xtanπ4-x=0∵tanπ2=∞,∞=a0⇒tanπ4+xtanπ4-x=1
Put value of tanπ4+xtanπ4-x back in (i).
⇒tan2π4+x+tan2π4-x+2=a2∵tanπ4+xtanπ4-x=1⇒tan2π4+x+tan2π4-x=a2-2
Hence, value of tan2π4+x+tan2π4-x is a2-2.
If \(2^{4} \times 4^{2} = 16^{x} \), then find the value of x.
Find the area bounded by the curve y=xx,x-axis and the ordinates x=1,x=-1.