Consider the given equation.
tan7θ⋅tan3θ=1
sin7θcos7θ⋅sin3θcos3θ=1
sin7θ⋅sin3θ=cos7θ⋅cos3θ
cos7θ⋅cos3θ−sin7θ⋅sin3θ=0
We know that
cos(A+B)=cosAcosB−sinAsinB
So,
cos(7θ+3θ)=0
cos(10θ)=0
cos(10θ)=cosπ2
10θ=2nπ±π2
θ=nπ5±π20
Hence, the value of θ is nπ5±π20.