The correct option is B 2
Here, by using the expression tan (A+B)=tan A+tanB1−tan AtanB
we get, tan 70°=tan(50°+20°)⇒tan 70°=tan 50°+tan 20°1−tan 50°tan 20°⇒tan 70°(1−tan 50°tan 20°) =tan 50°+tan 20°⇒tan 70°−tan 70°tan 50°tan 20° =tan 50°+tan 20°⇒tan 70°=tan 70°tan 50°tan 20° +tan 50°+tan 20°
Also we know tan 70°=tan (90°−20°)⇒tan 70°=cot 20°
Thus we get,
tan 70°=cot 20°tan 50° tan 20°+tan50ο+tan 20°⇒tan 70°=2 tan 50°+tan 20°
Now, comparing we get,
a=2, b=1
⇒ab=2.