If tanA=12,tanB=13, then cos2A=
sinB
sin2B
sin3B
None of these
Solving the given function:
tanA=12,tanB=13
We know that,
cos2A=1-tan2A1+tan2A
Substitute value of tanA
cos2A=1-1221+122=1-141+14=4-14+1=35
sin2B=2tanB1+tan2B
Substitute values of tanB
sin2B=2131+132=231+19=23109=35
Therefore, cos2A=sin2B
Hence, the correct option is (B).
Determine whether the following numbers are in proportion or not:
13,14,16,17