If tanA=2tanB+cotB, then 2tanA-B is equal to
cotBtanB
2tanB
cotB
2cotB
Explanation for the correct option:
Step 1: Given that,
tanA=2tanB+cotB
tanA=2tanB+1tanBtanA=2tan2B+1tanBtanAtanB=2tan2B+1...(i)
Step 2: Evaluatetan(A)−tan(B) the given equation.
∴tan(A)−tan(B)=2tan(B)+cot(B)−tan(B)=tan(B)+cot(B)=tan(B)+1tan(B)=tan2(B)+1tan(B)...(ii)
2tan(A–B)=2[(tan(A)–tan(B))(1+tan(A)tan(B))]=2(tan2(B)+1)tan(B)(1+2tan2(B)+1){from(i)and(ii)}=[2(1+tan2(B))][2(1+tan2(B))tan(B)]=1tan(B)=cot(B)
Hence, the correct option is (C).
If ∆DEF≅ ∆BCA, then ∠Dcorresponds to _______________ .
∠A/∠B