If tanA and tanB are the roots of the equation x2−ax+b=0, then the value of sin2(A+B) is
tanA and tanB are the roots of the equation x2−ax+b=0
⇒tanA+tanB=a,tanAtanB=b
tanA+tanB=a
sinAcosA+sinBcosB=a
sinAcosB+sinBcosAcosAcosB=a
sin(A+B)=acosAcosB
sin2(A+B)=a2cos2acos2B
sin2(A+B)=a2sec2Asec2B
sin2(A+B)=a2(1+tan2A)(1+tan2B)
sin2(A+B)=a21+tan2A+tan2B+tan2Atan2B
sin2(A+B)=a21+(tanA+tanB)2−2tanAtanB+tan2Atan2B
sin2(A+B)=a21+a2−2b+b2
sin2(A+B)=a2a2+(1−b)2