wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tanA and tanB are the roots of the quadratic equation, 3x210x25=0, then the value of 3sin2(A+B)10sin(A+B)cos(A+B)25cos2(A+B) is:

Open in App
Solution

Given, 3x210x25=0
tanA+tanB=103

tanA×tanB=253

tan(A+B)=tanA+tanB1tanAtanB

1031+253

103283=1028=514

tan(A+B)=514

sin(A+B)=5221

cos(A+B)=14221

3sin2(A+B)10sin(A+B)cos(A+B)25cos2(A+B)

=3×2522110×7022125×196221

=757004900221
=25

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon