If tan(A−B)=1 , sec(A+B)=2√3, then the smallest positive value of B is,
tan(A-B)=1
A−B=(2n+1)π4
n=0 since question is the smallest value possible
A−B=π4
A+B=2π−π6=11π6
Subtract both the equations
2B=11π6−π4
2B=(22−3)π12
B=19π24
If tan(A - B)=1, sec (A + B)= 2√3, then the smallest positive value of B is