If tan (A - B) = 1√3 and tan (A+B)=√3, 0∘ <(A+B) < 90∘ and A > B then find A and B.
tan(A+B)=√3
tan(A+B)=√3=tan600
⇒A+B=60−−−−(1)
tan(A−B)=1√3
tan(A−B)=1√3=tan300
⇒A−B=30−−−−(2)
Adding (1) and (2),
2A=90⇒A=45o
∴A+B=60⇒45+B=60
⇒B=60−45=15o
∴A=45o,B=15o