wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tan(A+B)=p, tan(A-B)=q, then show that tan2A=p+q1pq.

Open in App
Solution

RHS,
p+q1pq=tan(A+B)+tan(AB)1tan(A+B).tan(AB)
=tanA+tanB1tanA.tanB+tanAtanB1+tanA.tanB1tanA+tanB1tanA.tanB.tanAtanB1+tanA.tanB
=(tanA+tanB)(1+tanA.tanB)+(tanAtanB)(1tanA.tanB)(1+tanA.tanB)(1tanA.tanB)(1+tanA.tanB)+(tanA+tanB).(tanAtanB)(1tanA.tanB)(1+tanA.tanB)
=tanA+tanB+tan2A.tanB+tanA.tan2B+tanAtanBtan2A.tanB+tanA.tan2B1tan2A.tan2Btan2A+tan2B
=2tanA+2tanA.tan2B(1tan2A)(1+tan2B)=2tanA(1+tan2B)(1tan2A)(1+tan2B)=2tanA1tan2A=tan2A=LHS
Hence proved.

flag
Suggest Corrections
thumbs-up
19
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon