tan (A + B) = √3
⇒tan(A+B)=tan60∘
⇒(A+B)=60∘ ... (i)
tan (A - B) = 1√3
⇒tan(A−B)=tan30∘
⇒(A−B)=30∘ ... (ii)
Adding (i) and (ii); we get,
A+B+A−B=60∘+30∘
2A=90∘
A=45∘
Putting the value of A in equation (i),
45∘+B=60∘
⇒B=60∘−45∘
⇒B=15∘
Thus, A = 45∘ and B = 15∘