tanA=cotBtanAtanB=1thentan(A+B)=(tanA+tanB1−tanAtanB)(1tan(a+B))=(0tanA+tanB)∴tan(A+B)=∞=undefindthenA+B=(π2)
If ∠A and ∠ B are acute angles such that tan A = tan B then prove that ∠A=∠B.