If tanA=−12 and tanB=−13. (where A,B>0), then A+B can be
We have,
tanA=−12
tanB=−13
Since,
tan(A+B)=tanA+tanB1−tanAtanB
Thus,
tan(A+B)=−12−131−(−12)(−13)
tan(A+B)=−(56)1−(16)
tan(A+B)=−(56)(56)
tan(A+B)=−1
tan(A+B)=tan(3π4)
A+B=3π4
Hence, this is the answer.