Simplify the given expression by using multiple angles formula
Given:tanA=1−cosBsinB
tan2A=2tanA1−tan2A
=2(1−cosBsinB)1−(1−cosBsinB)2
tan2A=2⎛⎜
⎜
⎜
⎜⎝2sin2(B2)2sin(B2)cos(B2)⎞⎟
⎟
⎟
⎟⎠1−⎛⎜
⎜
⎜
⎜⎝2sin2(B2)2sin(B2)cos(B2)⎞⎟
⎟
⎟
⎟⎠2
[∵1−cos2θ=2sin2θ &sin2θ=2sinθcosθ]
=2tan(B2)1−tan2(B2)
=tanB
∴tan2A=tanB