Tangent, Cotangent, Secant, Cosecant in Terms of Sine and Cosine
If tan A = x ...
Question
If tanA=xsinB1−xcosB and tanB=ysinA1−ycosA, then the value of sinAsinB for all permissible values of A,B is
A
xy
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
x+yx−y
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
yx
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
y+xy−x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Axy tanA=xsinB1−xcosB⇒sinAcosA=xsinB1−xcosB⇒sinA−xcosBsinA=xsinBcosA⇒sinA=x(cosAsinB+cosBsinA)⇒sinA=xsin(A+B)⋯(1) tanB=ysinA1−ycosA⇒sinBcosB=ysinA1−ycosA⇒sinB−ycosAsinB=ycosBsinB⇒sinB=y(cosAsinB+cosBsinB)⇒sinB=ysin(A+B)⋯(2)
Now, sinAsinB=xsin(A+B)ysin(A+B)∴sinAsinB=xy