If tan A=17 and tan B=13, show that cos 2A = sin 4B.
We have,
tan A=17 and tan B=13
∴ cos 2A=1−tan2 A1+tan2 A=1−(17)21+(17)2=48495049
=4850=2425 . . .(A)
Also,
sin 4B = sin2.2B
= 2 sin 2B. cos 2B
=2.(2 tan B1+tan2B).(1−tan2B1+tan2B)=4.(131+19).(1−191+19)=4.13.89109×109=32×3100
=8×325=2425 . . .(B)
from (A) and (B)
cos2A = sin 4B