If tanA+B=pand tanA-B=q, then the value of tan2A in terms of pand qis:
p+qp-q
p-q1+pq
p+q1-pq
1+pq1-p
Explanation for the correct option
Given that tanA+B=pand tanA-B=q
2A=A+B+A-B
Applying tan on both sides, we get,
tan2A=tanA+B+A-B=tanA+B+tanA-B1-tanA+BtanA-B;∵tanx+y=tanx+tany1-tanxtany⇒tan2A=p+q1-pq;∵tanA+B=p;tanA-B=q
Hence the correct option is option(C) i.e. p+q1-pq