sin2A=(2tanA1+tan2A)=(2(√2−1)1+(√2−1)2)=(2(√2−1)1+2+1−2√2)=(2(√2−1)4−2√2)=(2(√2−1)2√2(√2−1))∴sin2A=(1√2)or2sinAcosA=(1√2)∴sinAcosA=(12√2)