wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tanA=21, then prove that sinAcosA=122.

Open in App
Solution


sin2A=(2tanA1+tan2A)=(2(21)1+(21)2)=(2(21)1+2+122)=(2(21)422)=(2(21)22(21))sin2A=(12)or2sinAcosA=(12)sinAcosA=(122)


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon