If tanA+tanB=a and cotA+cotB=b, prove that: cot(A+B)=1a−1b.
Open in App
Solution
Given: tanA+tanB=a and cotA+cotB=b,
cot(A+B)=cotAcotB−1cotA+cotB
⇒cot(A+B)=cotAcotB−1b…(1)
We know that : tanA+tanB=a ⇒cotA+cotBcotAcotB=a ⇒cotAcotB=ba
Now, from equation (1), we get cot(A+B)=ba−1b ∴cot(A+B)=1a−1b
Hence proved.