wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tanA,tanB are the roots of the quadratic ab x2c2x+ab=0, where a,b,c are the sides of a triangle, then prove
sin2A+sin2B+sin2C=2

Open in App
Solution

abx2c2x+ab=0
tanA,tanB
tanA=c2c4a2b22ab
tanB=c2+c4a2b22ab
tan(A+B)=tanA+tanB1tanAtanB
=c2ab11
A+B=π2,C=π2
c2=a2+b2c4=a4+b4+2a2b2
tanA=c2(a2b2)2ab=a2+b2a2+b22ab=2b22ab=ba
tanB=ab
sinA=b2b2+a2
sinB=a2a2+b2
sin2A+sin2B+sin2C=b2+a2b2+a2+1=1+1=2


1102071_1005645_ans_33c815d004c94bc4a7ec504bb067b183.png

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving QE using Quadratic Formula
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon