Domain and Range of Basic Inverse Trigonometric Functions
If tanA,tan...
Question
If tanA,tanB are the roots of the quadratic abx2−c2x+ab=0, where a,b,c are the sides of a triangle, then
A
tanA=ab
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
tanB=ba
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
cosC=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
tanA+tanA=c2ab
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are BtanA=ab CtanA+tanA=c2ab DtanB=ba If tanA,tanB are the roots of the quadratic abx2−c2x+ab=0 then tanA+tanB=c2ab tanAtanB=1 ∵tan(A+B)=tanA+tanB1−tanAtanB=c2ab1−1=c20=∞ ∴A+B=π2 ∴C=π2 ∴cosC=a2+b2−c22ab=∞ ∴a2+b2=c2 Using sine rule, we have ⇒(2RsinA)2+(2RsinB)2=(2RsinC)2 ⇒4R2sin2A+4R2sin2B=4R2sin2C Dividing both sides by 4R2 we get ⇒sin2A+sin2B=sin2C Add sin2C to both sides, we get ⇒sin2A+sin2B+sin2C=2sin2C Since C=π2 (from above) ⇒sin2A+sin2B+sin2C=2sin2π2 ⇒sin2A+sin2B+sin2C=2 ∴tanA+tanB=c2ab=a2+b2ab=ab+ba But, tanAtanB=1=abba ∴tanA=ab,tanB=ba