If tan A, tan B are the roots of x2−Px+Q=0 the value of sin2 (A+B)=(where P, Q ϵ R)
P2P2+Q2
P2(P+Q)2
P2P2+(1−Q)2
Q2P2+(1−Q)2
tan(A+B)=P1−Q then sin2(A+B)=tan2 (A+B)1+tan2(A+B)