If tanA and tanB are the roots of x2-ax+b=0 then the value of sin2A+B is
a2a2+1-b2
a2a2+b2
a2a+b2
b2a2+a-b2
Explanation for the correct option
Given that tanA and tanB are the roots of x2-ax+b=0
We know that for a quadratic equation px2+qx+s=0,
sum of roots=-qp and product of roots=sp
∴tanA+tanB=a and tanAtanB=b
⇒tanA+B=tanA+tanB1-tanAtanB=a1-b⇒tan2A+B=a21-b2⇒cot2A+B=1-b2a2;∵cotθ=1tanθ∴cosec2A+B-cot2A+B=1;∵cosec2θ-cot2θ=1⇒cosec2A+B=1+cot2A+B⇒=1+1-b2a2;∵cot2A+B=1-b2a2⇒=a2+1-b2a2⇒sin2A+B=a2a2+1-b2;∵sinθ=1cscθ
Hence the correct option is option(A) i.e. a2a2+1-b2