If tan(α+θ) =n tan(α-θ) show that : (n+1)sin 2θ =(n-1)sin2α
If tanx+tan(x+π3)+tan(x+2π3)=3, prove that 3tan x−tan3x1−3tan2 x=1.
Or
If sinθ=nsin(θ+2α), prove that tan(θ+α)=1+n1−ntanα.
Which of the following statements are correct?
1 . if sin θ = sin α ⇒ θ = nπ + (−1)nα where α ∈ [ - π2 , π2] n ∈ I
2 . if cos θ = cos α ⇒ 2nπ±α where α ∈ [0,π] n ∈ I
3 . if tan θ = tan α ⇒ θ = nπ + α where α ∈ (- π2 , π2 ) n ∈ I