If tanα=2√2, then the value of tanαsin3αcosα+sinα.cosα is
Simplifying the given expression we get
sinαcosαsin2αtanα+sinαcosα
=sinα(sinαcosα)(sinαtanα+cosα) ...(taking sinα common from the denominator)
=1sinαtanαcosα+cos2α
=1sin2α+cos2α
=1
Hence answer is D