If tanα and tanβ are the roots of the equation x2+px+q=0(p≠0), then
Hence
tanα+tanβ=−p
And
tanα.tanβ=q
Now
tanα+tanβ1−tanα.tanβ
=tan(α+β)
=−p1−q
=pq−1.
Hence
sin(α+β)=p.
cos(α+β)=q−1.
Hence
p2+p(p)(q−1)+q(q−1)2
=p2+p2(q−1)+q(q−1)2
=p2.q+q(q−1)2
=q(p2+(q−1)2)
=q(sin(α+β)2+cos(α+β)2)
=q.