Given that-
2tanα=3tanβ
tanα=32
tan(α−β)=tanα−tanβ1+tanαtanβ
=32tanβ−tanβ1+32tan2β
=tanβ1+32tan2β
=sinβcosβ1+32sin2βcos2β
=sinβcosβ2cos2β+3sin2β
=2sinβcosβ2((1+cos2β)+32(1−cos2β))
=sin2β5−cos2β
Hence, proved .
If 2 tan α=3 tan β, prove that tan(α−β)=sin 2β5−cos2β
If tan(α−β)=sin 2β3−cos2β,then