If tan(α−β)=sin 2β3−cos2β,then
tanα=2 tanβ
tanβ=2 tanα
2 tanα=3 tanβ
3 tanα=2 tanβ
We have sin 2β3−cos2β=2 sinβ.cosβ2−2cos2β+1+cos2β
=2 sinβ.cosβ4 sin2β+2 cos2β=tanβ1+2 tan2β=2 tanβ−tanβ1+2 tan2β
=tan(α−β)=tanα−tanβ1+tanα.tanβ=2 tanβ−tanβ1+2 tan2β
∴tanα=2 tanβ
If 2 tan α=3 tan β, prove that tan(α−β)=sin 2β5−cos2β
If α and β are acute angles satisfying cos 2α=3 cos 2β−13−cos 2β, then tan α =