The correct option is
B π4+θ2tanα=1+√1+sin2θ1−√1−sin2θ
=1+√sin2θ+cos2θ+sin2θ1−√sin2θ+cos2θ−sin2θ by replacing 1=sin2θ+cos2θ
=1+√sin2θ+cos2θ+2sinθcosθ1−√sin2θ+cos2θ−2sinθcosθ by using multiple angle formula sin2θ=2sinθcosθ
=1+√(sinθ+cosθ)21−√(sinθ−cosθ)2
=1+sinθ+cosθ1−sinθ+cosθ
=(1+cosθ)+sinθ(1+cosθ)−sinθ
=(1+cosθ)+sinθ(1+cosθ)−sinθ×(1+cosθ)+sinθ(1+cosθ)+sinθ by rationalising the denominator.
=(1+cosθ)2+sin2θ+2sinθ(1+cosθ)(1+cosθ)2−sin2θ
=1+(cos2θ+sin2θ+2(sinθ+cosθ+sinθcosθ))1+cos2θ+2cosθ−sin2θ
=2+2sinθ+2cosθ+2sinθcosθ2cos2θ+2cosθ on simplification
=2[(1+sinθ)+cosθ(1+sinθ)]2cosθ(1+cosθ)
=1+sinθcosθ
=1+sinθcosθ×1−sinθ1−sinθ by rationalising the numerator
=1−sin2θcosθ(1−sinθ)
=cos2θcosθ(1−sinθ)
=cosθ(1−sinθ)
=1−tan2θ21+tan2θ21−2tanθ21+tan2θ2
=1−tan2θ21+tan2θ2−2tanθ2
=(1−tanθ2)(1+tanθ2)(1−tanθ2)2
=(1+tanθ2)(1−tanθ2)
=(tanπ4+tanθ2)(1−tanπ4tanθ2) by taking 1=tanπ4
⇒tanα=tan(π4+θ2)
∴α=π4+θ2