wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tanα=1+1+sin2θ11sin2θ where 0<θ<π4 then value of α can be

A
π2θ2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π4+θ2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
π+θ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
θ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B π4+θ2
tanα=1+1+sin2θ11sin2θ

=1+sin2θ+cos2θ+sin2θ1sin2θ+cos2θsin2θ by replacing 1=sin2θ+cos2θ

=1+sin2θ+cos2θ+2sinθcosθ1sin2θ+cos2θ2sinθcosθ by using multiple angle formula sin2θ=2sinθcosθ

=1+(sinθ+cosθ)21(sinθcosθ)2

=1+sinθ+cosθ1sinθ+cosθ

=(1+cosθ)+sinθ(1+cosθ)sinθ

=(1+cosθ)+sinθ(1+cosθ)sinθ×(1+cosθ)+sinθ(1+cosθ)+sinθ by rationalising the denominator.

=(1+cosθ)2+sin2θ+2sinθ(1+cosθ)(1+cosθ)2sin2θ

=1+(cos2θ+sin2θ+2(sinθ+cosθ+sinθcosθ))1+cos2θ+2cosθsin2θ

=2+2sinθ+2cosθ+2sinθcosθ2cos2θ+2cosθ on simplification

=2[(1+sinθ)+cosθ(1+sinθ)]2cosθ(1+cosθ)

=1+sinθcosθ

=1+sinθcosθ×1sinθ1sinθ by rationalising the numerator

=1sin2θcosθ(1sinθ)

=cos2θcosθ(1sinθ)

=cosθ(1sinθ)

=1tan2θ21+tan2θ212tanθ21+tan2θ2

=1tan2θ21+tan2θ22tanθ2

=(1tanθ2)(1+tanθ2)(1tanθ2)2

=(1+tanθ2)(1tanθ2)

=(tanπ4+tanθ2)(1tanπ4tanθ2) by taking 1=tanπ4

tanα=tan(π4+θ2)

α=π4+θ2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Allied Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon