We have,
tanα=asinβ1−acosβ
sinαcosα=asinβ1−acosβ
sinα−asinαcosβ=acosαsinβ
sinα=a(sinαcosβ+cosαsinβ)
sinα=asin(α+β).......(1)
Similarly,
tanβ=bsinα1−bcosα
sinβcosβ=bsinα1−bcosα
sinβ−bcosαsinβ=bsinαcosβ
sinβ=bsin(α+β)........(2)
On dividing equation (1) from (2), we get
sinαsinβ=asin(α+β)bsin(α+β)
sinαsinβ=ab
Hence, proved.