We have,
tanα=asinβ1−acosβ
sinαcosα=asinβ1−acosβ
sinα−asinαcosβ=acosαsinβ
sinα=a(sinαcosβ+cosαsinβ)
sinα=asin(α+β) ……… (1)
Similarly,
tanβ=bsinα1−bcosα
sinβcosβ=bsinα1−bcosα
sinβ−bcosαsinβ=bsinαcosβ
sinβ=b(sinαcosβ+cosαsinβ)
sinβ=bsin(α+β) …….. (2)
From equation (1) and (2), we get
sinαsinβ=ab
Hence, proved.