If tanα=mm+1 and tanβ=12m+1 find the possible values of (α+β)
Given that tanα=mm+1 ……. (1) and tanβ=12m+1 …….. (2)
Find α+β=?
We know that,
tan(α+β)=tanα+tanβ1−tanαtanβ
Put the value of tanα and tanβ
tan(α+β)=mm+1+12m+11−mm+112m+1
⇒tan(α+β)=m(2m+1)+m+1(m+1)(2m+1)(m+1)(2m+1)−m(m+1)(2m+1)
⇒tan(α+β)=2m2+m+m+12m2+2m+m+1−m
⇒tan(α+β)=2m2+m+m+12m2+m+m+1
⇒tan(α+β)=1
⇒tan(α+β)=tan450
⇒α+β=450
Hence, this is the answer